1. Планируемые результаты освоения учебного предмета, курса;

ФГОС устанавливает требования к следующим результатам освоения обучающимися основной образовательной программы среднего общего образования:

- 1. личностным результатам;
- 2. метапредметным результатам;
- 3. предметным результатам.

Личностные результаты

При изучении курса «Информатика» в соответствии с требованиями ФГОС формируются следующие личностные результаты.

- 1. Сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики. Каждая учебная дисциплина формирует определенную составляющую научного мировоззрения. Информатика формирует представления учащихся о науках, развивающих информационную картину мира, вводит их в область информационной деятельности людей. Ученики узнают о месте, которое занимает информатика в современной системе наук, об информационной картине мира, ее связи с другими научными областями. Ученики получают представление о современном уровне и перспективах развития ИКТ-отрасли, в реализации которых в будущем они, возможно, смогут принять участие.
- 2. Сформированность навыков сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности. Эффективным методом формирования данных качеств является учебно-проектная деятельность. Работа над проектом требует взаимодействия между учениками исполнителями проекта, а также между учениками и учителем, формулирующим задание для проектирования, контролирующим ход его выполнения и принимающим результаты работы. В завершение работы предусматривается процедура защиты проекта перед коллективом класса, которая также требует наличия коммуникативных навыков у детей.
- 3. Бережное, ответственное и компетентное отношение к физическому и психологическому здоровью как к собственному, так и других людей, умение оказывать первую помощь. Работа за компьютером (и не только над учебными заданиями) занимает у современных детей все больше времени, поэтому для сохранения здоровья очень важно знакомить учеников с правилами безопасной работы за компьютером, с компьютерной эргономикой.
- 4. Готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности; осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов. Данное качество формируется в процессе развития навыков самостоятельной учебной и учебно-исследовательской работы учеников. Выполнение проектных заданий требует от ученика проявления самостоятельности в изучении нового материала, в поиске информации в различных источниках. Такая деятельность раскрывает перед учениками возможные перспективы в изучении предмета и в дальнейшей профориентации в этом направлении. Во многих разделах учебников рассказывается об использовании

информатики и ИКТ в различных профессиональных областях и перспективах их развития.

Метапредметные результаты

При изучении курса «Информатика» в соответствии с требованиями $\Phi \Gamma O C$ формируются следующие метапредметные результаты.

1. Умение самостоятельно определять цели и составлять планы; самостоятельно

осуществлять, контролировать и корректировать учебную и внеучебную (включая
внешкольную) деятельность; использовать все возможные ресурсы для достижения
целей; выбирать успешные стратегии в различных ситуациях. Данная компетенция
формируется при изучении информатики в нескольких аспектах:
□ учебно-проектная деятельность: планирование целей и процесса выполнения проекта и самоконтроль за результатами работы;
□ изучение основ системологии: способствует формированию системного подхода к
анализу объекта деятельности;
unuming construction,
\square алгоритмическая линия курса: алгоритм можно назвать планом достижения цели
исходя из ограниченных ресурсов (исходных данных) и ограниченных возможностей
исполнителя (системы команд исполнителя).
2. Умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции другого, эффективно разрешать конфликты.
Формированию данной компетенции способствуют следующие аспекты методической
формированию данной компетенции еносооствуют следующие аспекты методи неской системы курса:
спетемы курса.
\sqsupset формулировка многих вопросов и заданий к теоретическим разделам курса
стимулирует к дискуссионной форме обсуждения и принятия согласованных решений;
🗆 ряд проектных заданий предусматривает коллективное выполнение, требующее от
учеников умения взаимодействовать; защита работы предполагает коллективное
обсуждение ее результатов.

Предметные результаты

При изучении курса «Информатика» в соответствии с требованиями ФГОС формируются следующие предметные результаты, которые ориентированы на обеспечение, преимущественно, общеобразовательной и общекультурной подготовки.

- 1. Сформированность представлений о роли информации и связанных с ней процессов в окружающем мире
- 2. Владение навыками алгоритмического мышления и понимание необходимости формального описания алгоритмов
- 3. Владение умением понимать программы, написанные на выбранном для изучения универсальном алгоритмическом языке высокого уровня
- 4. Владение стандартными приемами написания на алгоритмическом языке программы для решения стандартной задачи с использованием основных конструкций программирования и отладки таких программ

- 5. Сформированность представлений о компьютерно-математических моделях и необходимости анализа соответствия модели и моделируемого объекта (процесса)
- 6. Владение компьютерными средствами представления и анализа данных
- 7. Сформированность базовых навыков и умений по соблюдению требований техники безопасности, гигиены и ресурсосбережения при работе со средствами информатизации

2. Содержание учебного предмета, курса;

Основные содержательные линии общеобразовательного курса базового уровня для старшей школы расширяют и углубляют следующие содержательные линии курса информатики основной школы.

- 1. Линия информации и информационных процессов (определение информации, измерение информации, универсальность дискретного представления информации; процессы хранения, передачи и обработки информации в информационных системах; информационные основы процессов управления).
- 2. Линия моделирования и формализации (моделирование как метод познания; информационное моделирование: основные типы информационных моделей; исследование на компьютере информационных моделей из различных предметных областей).
- 3. Линия алгоритмизации и программирования (понятие и свойства алгоритма, основы теории алгоритмов, способы описания алгоритмов, языки программирования высокого уровня, решение задач обработки данных средствами программирования).
- 4. Линия информационных технологий (технологии работы с текстовой и графической информацией; технологии хранения, поиска и сортировки данных; технологии обработки числовой информации с помощью электронных таблиц; мультимедийные технологии).
- 5. Линия компьютерных коммуникаций (информационные ресурсы глобальных сетей, организация и информационные услуги Интернета, основы сайтостроения). 6. Линия социальной информационное право, информационная безопасность, информационная культура, информационное право, информационная безопасность). Центральными понятиями, вокруг которых выстраивается методическая система курса, являются «информационные процессы», «информационные системы», «информационные модели», «информационные технологии».

Основной целью изучения учебного курса как по минимальному, так и по расширенному учебному плану остается выполнение требований Федерального государственного образовательного стандарта. В то же время, работая в режиме 1 урок в неделю, учитель может обеспечить лишь репродуктивный уровень усвоения материала всеми учащимися. Достижение же продуктивного, а тем более творческого уровня усвоения курса является весьма проблематичным из-за недостатка учебного времени — основного ресурса учебного процесса. Учебник и практикум в совокупности обеспечивают выполнение всех требований образовательного стандарта к предметным, личностным и метапредметным результатам обучения.

Первой дополнительной целью изучения расширенного курса является достижение большинством учащихся повышенного (продуктивного) уровня освоения учебного материала. Качественно освоить весь этот материал в полном объеме, имея 1 урок в

неделю, практически невозможно. Источником дополнительного учебного материала также может служить задачник-практикум. Второй дополнительной целью изучения расширенного курса является подготовка учащихся к сдаче Единого государственного экзамена по информатике. ЕГЭ по информатике не является обязательным для всех выпускников средней школы и сдается по выбору. Теперь, когда количество принимаемых вузами результатов ЕГЭ расширено до четырех, информатика становится востребованной при поступлении на многие популярные специальности. В расширенном варианте курса дополнительное учебное время в основном отдается практической работе. Кроме того, в расширенном курсе увеличивается объем заданий проектного характера. Работая по минимальному учебному плану, учитель может выбрать лишь часть проектных заданий, предлагаемых в практикуме, причем возложив их выполнение полностью на внеурочную работу. При расширенном варианте учебного плана большая часть (или все) проектных заданий может выполняется во время уроков под руководством учителя. Резерв учебного времени, предусмотренный программой идет на подготовку к единому государственному экзамену